首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   382篇
  免费   29篇
  国内免费   1篇
化学   333篇
晶体学   3篇
力学   3篇
数学   9篇
物理学   64篇
  2023年   1篇
  2022年   3篇
  2021年   13篇
  2020年   9篇
  2019年   6篇
  2018年   11篇
  2017年   10篇
  2016年   8篇
  2015年   18篇
  2014年   15篇
  2013年   24篇
  2012年   26篇
  2011年   39篇
  2010年   25篇
  2009年   25篇
  2008年   27篇
  2007年   25篇
  2006年   20篇
  2005年   20篇
  2004年   16篇
  2003年   13篇
  2002年   10篇
  2001年   8篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1988年   2篇
  1987年   4篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   3篇
  1973年   2篇
排序方式: 共有412条查询结果,搜索用时 31 毫秒
81.
The reaction of [Ni2(OH)2(Me2-tpa)2]2+ (1) (Me2-tpa = bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) with H2O2 causes oxidation of a methylene group on the Me2-tpa ligand to give an N-dealkylated ligand and oxidation of a methyl group to afford a ligand-based carboxylate and an alkoxide as the final oxidation products. A series of sequential reaction intermediates produced in the oxidation pathways, a bis(mu-oxo)dinickel(III) ([Ni2(O)2(Me2-tpa)2]2+ (2)), a bis(mu-superoxo)dinickel(II) ([Ni2(O2)2(Me2-tpa)2]2+ (3)), a (mu-hydroxo)(mu-alkylperoxo)dinickel(II) ([Ni2(OH)(Me2-tpa)(Me-tpa-CH2OO)]2+ (4)), and a bis(mu-alkylperoxo)dinickel(II) ([Ni2(Me-tpa-CH2OO)2]2+ (5)), was isolated and characterized by various physicochemical measurements including X-ray crystallography, and their oxidation pathways were investigated. Reaction of 1 with H2O2 in methanol at -40 degrees C generates 2, which is extremely reactive with H2O2, producing 3. Complex 2 was isolated only from disproportionation of the superoxo ligands in 3 in the absence of H2O2 at -40 degrees C. Thermal decomposition of 2 under N2 generated an N-dealkylated ligand Me-dpa ((6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine) and a ligand-coupling dimer (Me-tpa-CH2)2. The formation of (Me-tpa-CH2)2 suggests that a ligand-based radical Me-tpa-CH2* is generated as a reaction intermediate, probably produced by H-atom abstraction by the oxo group. An isotope-labeling experiment revealed that intramolecular coupling occurs for the formation of the coupling dimer. The results indicate that the rebound of oxygen to Me-tpa-CH2* is slower than that observed for various high-valence bis(mu-oxo)dimetal complexes. In contrast, the decomposition of 2 and 3 in the presence of O2 gave carboxylate and alkoxide ligands, respectively (Me-tpa-COO- and Me-tpa-CH2O-), instead of (Me-tpa-CH2)2, indicating that the reaction of Me-tpa-CH2* with O2 is faster than the coupling of Me-tpa-CH2* to generate ligand-based peroxyl radical Me-tpa-CH2OO*. Although there is a possibility that the Me-tpa-CH2OO* species could undergo various reactions, one of the possible reactive intermediates, 4, was isolated from the decomposition of 3 under O2 at -20 degrees C. The alkylperoxo ligands in 4 and 5 can be converted to a ligand-based aldehyde by either homolysis or heterolysis of the O-O bond, and disproportionation of the aldehyde gives a carboxylate and an alkoxide via the Cannizzaro reaction.  相似文献   
82.
Ruthenium(III)‐substituted α‐Keggin‐type silicotungstates with pyridine‐based ligands, [SiW11O39RuIII(Py)]5?, (Py: pyridine ( 1 ), 4‐pyridine‐carboxylic acid ( 2 ), 4,4′‐bipyridine ( 3 ), 4‐pyridine‐acetamide ( 4 ), and 4‐pyridine‐methanol ( 5 )) were prepared by reacting [SiW11O39RuIII(H2O)]5? with the pyridine derivatives in water at 80 °C and then isolated as their hydrated cesium salts. These compounds were characterized using cyclic voltammetry (CV), UV/Vis, IR, and 1H NMR spectroscopy, elemental analysis, titration, and X‐ray absorption near‐edge structure (XANES) analysis (Ru K‐edge and L3‐edge). Single‐crystal X‐ray analysis of compounds 2 , 3 , and 4 revealed that RuIII was incorporated in the α‐Keggin framework and was coordinated by pyridine derivatives through a Ru? N bond. In the solid state, compounds 2 and 3 formed a dimer through π? π interaction of the pyridine moieties, whereas they existed as monomers in solution. CV indicated that the incorporated RuIII–Py was reversibly oxidized into the RuIV–Py derivative and reduced into the RuII–Py derivative.  相似文献   
83.
Space division with red cubes: Doping metal-organic frameworks with another metal component gives a further opportunity to tune their properties. Recent work successfully introduced europium into the inorganic nodes of frameworks. Although the doping element does not affect the framework topology, highly improved emissive performance was measured thanks to the intrinsic red emission of europium.  相似文献   
84.
Here we describe the application of a recently developed high-resolution microcantilever biosensor resonating at the air-liquid interface for the continuous detection of antigen-antibody and enzyme-substrate interactions. The cantilever at the air-liquid interface demonstrated 50% higher quality factor and a 5.7-fold increase in signal-to-noise-ratio (SNR) compared with one immersed in the purified water. First, a label-free detection of a low molecular weight protein (insulin, 5.8 kDa) in physiological concentration was demonstrated. The liquid facing side of the cantilever was functionalized by coating its surface with insulin antibodies, while the opposite side was exposed to air. The meniscus membrane at the micro-slit around the cantilever sustained the liquid in the microchannel. After optimizing the process of surface functionalization, the resonance frequency shift was successfully measured for insulin solutions of 0.4, 2.0, and 6.3 ng ml(-1). To demonstrate additional application of the device for monitoring enzymatic protein degradation, the liquid facing microcantilever surface was coated with human recombinant SOD1 (superoxide dismutase 1) and exposed to various concentrations of proteinase K solution, and the kinetics of the SOD1 digestion was continuously monitored. The results showed that it is a suitable tool for sensitive protein detection and analysis.  相似文献   
85.
A series of 1,1'-ferrocenedicarboxylate-based two-dimensional porous coordination polymers were synthesized by incorporating different diamine co-ligands. These compounds immobilized on electrodes, exhibited reversible redox reactions, arising from ferrocenyl moiety.  相似文献   
86.
A new pathway for the preparation of mono-ruthenium (Ru)(iii)-substituted Keggin-type heteropolytungstates with an aqua ligand, [PW(11)O(39)Ru(iii)(H(2)O)](4-) (1a), [SiW(11)O(39)Ru(iii)(H(2)O)](5-) (1b) and [GeW(11)O(39)Ru(iii)(H(2)O)](5-) (1c), using [Ru(ii)(benzene)Cl(2)](2) as a Ru source was described. Compounds 1a-1c were prepared by reacting [XW(11)O(39)](n-) (X = P, Si and Ge) with [Ru(ii)(benzene)Cl(2)](2) under hydrothermal condition and were isolated as caesium salts. Ru(benzene)-supported heteropolytungstates, [PW(11)O(39){Ru(ii)(benzene)(H(2)O)}](5-) (2a), [SiW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2b) and [GeW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2c), were first produced in the reaction media, and then transformed to 1a, 1b and 1c, respectively, under hydrothermal conditions. Calcination of Ru(benzene)-supported heteropolytungstates, 2a, 2b and 2c, in the solid state produced mixtures of 1a, 1b and 1c with CO (carbon monoxide)-coordinated complexes, [PW(11)O(39)Ru(ii)(CO)](5-) (4a), [SiW(11)O(39)Ru(ii)(CO)](6-) (4b) and [GeW(11)O(39)Ru(ii)(CO)](6-) (4c), respectively. From comparison of their catalytic activities in water oxidation reaction, it was indicated that ruthenium should be incorporated in the heteropolytungstate in order to promote catalytic activity.  相似文献   
87.
Nanoparticles taken into biological systems can have biological impacts through their interactions with cell membranes, accompanied by protein adsorption onto the nanoparticle surfaces, forming a so-called protein corona. Our current research aims to demonstrate that nanoscale protein aggregates behave like such nanoparticles with regard to the interaction with lipid membranes. In this study, the adsorption and disruption of the lipid membranes by protein aggregates were investigated using amyloid fibrils and nanoscale thermal aggregates of lysozyme. Both types of protein aggregates had disruptive effects on the negatively charged liposomes, similar to polycationic nanoparticles. Interestingly, adsorption of liposomes on the amyloid fibrils preceding disruption occurred even if the net charge of the liposome was zero, suggesting the importance of hydrophobic interactions in addition to electrostatic interactions. The results of the present study provide new insights into the biological impacts of nanoparticles in vivo.  相似文献   
88.
Using a high-contrast (10(10):1) and high-intensity (10(21) W/cm(2)) laser pulse with the duration of 40 fs from an optical parametric chirped-pulse amplification/Ti:sapphire laser, a 40 MeV proton bunch is obtained, which is a record for laser pulse with energy less than 10 J. The efficiency for generation of protons with kinetic energy above 15 MeV is 0.1%.  相似文献   
89.
We developed a simple preparation procedure for the protein encapsulated nanoparticle and used the nanoparticle for spatiotemporal activity control of various proteins. We succeeded in the local protein activation within cells by light using the nanoparticle.  相似文献   
90.
A tensile and tensile-mode-fatigue tester has been developed for testing microscale specimens in high humidity environments in order to investigate the fracture mechanisms of microelectromechanical materials. A humidity control system was installed on a tensile-mode fatigue tester equipped with an electrostatic force grip. A specimen and a griping device were inserted into a small chamber and the humidity was controlled by air flow from a temperature and humidity chamber. The humidity stability was within ±2%RH for humidities in the range 25–90%RH for eight hours of testing. Fatigue tests were performed on single-crystal silicon (SCS) specimens in constant humidity environments and laboratory air for up to 106 cycles. The gauge length, width, and thickness of the SCS specimens were 100 or 500 μm, 13.0 μm, and 3.3 μm, respectively. The average tensile strength was 3.68 GPa in laboratory air; this value decreased in high humidity environments. Fatigue failure was observed during cyclic loading at stresses lower than the average strength. A reduction in the fatigue strength was observed at high relative humidities. Different fracture origins and fracture behaviors were observed in tensile tests and fatigue tests, which indicates that the water vapor in air affects the fatigue properties of SCS specimens.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号